Sheet 4

1 Find the charge in the volume defined by $1 \leq r \leq 2 \mathrm{~m}$ in the spherical coordinates, if $\rho_{v}=5 \operatorname{Cos}^{2} \emptyset / r^{4} C / m^{3}$.
2. A circular disk of 4 m radius with a charge density $\rho_{s}=12 \sin \phi \mu C / \mathrm{m}^{2}$ is enclosed by surface S. what net flux crosses S ?

3 Find the charge in the volume defined by $0 \leq x \leq 1 \mathrm{~m}, 0 \leq \mathrm{y} \leq 1 \mathrm{~m}$ and $0 \leq \mathrm{z} \leq 1 \mathrm{~m}$, if $\rho_{v}=30 x^{2} y \mu c / m^{3}$. What change occurs for limits $-1 \leq \mathrm{y} \leq 0 \mathrm{~m}$?

4 What net flux crosses the closed surface S which contains a charge distribution in the form of a plane disk of radius 4 m with a density $\rho_{s}=\operatorname{Sin}^{2} \emptyset / 2 r \mu c / m^{2}$.

5 A point charge Q is at the origin of spherical coordinates. Calculate the electric flux Passing through a portion of a sphere shell described by $\alpha \leq \theta \leq \beta$. what is the result when $\alpha=0$ and $\beta=\pi / 2$.

6 A point charge $Q=30 n c$, is located at the origin in cartesian coordicates. Find the electric flux density D at (1,3, -4,).

7 Two identical uniform line charges lie along the x and y axes with $\rho_{l}=20 \mu \mathrm{C} / \mathrm{m}$. Obtain \bar{D} and \bar{E} at $(3,3,3) \mathrm{m}$.

8 The volume in cylindrical coordinates between $r=2 m$ and $r=4 m$ contains a uniform charge density $\rho_{v} \mu c / m^{3}$. Use Gauss' law to find D in all regions.

9 The volume in Spherical coordinates has radius $r=a$, and contains a uniform charge density $\rho_{v} \mu c / m^{3}$. Use Gauss' law to find D. What point charge at origin will result in the same D field for $r>a$?

